Sulfur Reduction Reaction in Lithium–Sulfur Batteries: Mechanisms, Catalysts, and Characterization

نویسندگان

چکیده

Lithium–sulfur batteries are one of the most promising alternatives for advanced battery systems due to merits extraordinary theoretical specific energy density, abundant resources, environmental friendliness, and high safety. However, sluggish sulfur reduction reaction (SRR) kinetics results in poor utilization, which seriously hampers electrochemical performance Li–S batteries. It is critical reveal underlying mechanisms accelerate SRR kinetics. Herein, issues reviewed. The conversion pathways initially introduced give an overview SRR. Subsequently, recent advances catalyst materials that can summarized detail, including carbon, metal compounds, metals, single atoms. Besides, various characterization approaches discussed, be divided into three categories: measurements, spectroscopic techniques, calculations. Finally, conclusion outlook part gives a summary proposes several key points future investigations on activities. This review provide cutting-edge insights

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells

Density functional theory (DFT) was applied to study sulfur-doped graphene clusters as oxygen reduction reaction (ORR) cathode catalysts for fuel cells. Several sulfurdoped graphene clusters with/without Stone−Wales defects were investigated and their electronic structures, reaction free energy, transition states, and energy barriers were calculated to predict their catalytic properties. The re...

متن کامل

Fabrication and Characterization of Lithium-Sulfur Batteries

The lithium–sulfur battery is a promising system for the future generation of rechargeable batteries. Its main advantages are the high theoretical capacity (1675 Ah kgS), high energy density (2500 Wh kgS), and low cost of sulfur. So far, the commercial application of this battery has been hindered by the reduced cyclelife. The isolating properties of sulfur as well as the formation of polysulf...

متن کامل

Characterization and optimization of SAPO-34 catalysts synthesized by mixed templates in MTO reaction

"> The effects of templating on the catalytic performance of SAPO-34 catalyst have been investigated in conversion of methanol to olefins. SAPO-34 <span style="font-size: 11pt; color: #000000; font-sty...

متن کامل

Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalysts

The catalyst activity of fluorite-type oxide, such as ceria and zirconia, for the reduction of sulfur dioxide by carbon monoxide to elemental sulfur can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst with a feed gas of stoichiometri...

متن کامل

Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries

Rechargeable lithium-sulfur (Li-S) batteries are receiving ever-increasing attention due to their high theoretical energy density and inexpensive raw sulfur materials. However, their rapid capacity fade has been one of the key barriers for their further improvement. It is well accepted that the major degradation mechanisms of S-cathodes include low electrical conductivity of S and sulfides, pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Energy Materials

سال: 2022

ISSN: ['1614-6832', '1614-6840']

DOI: https://doi.org/10.1002/aenm.202202094